I am providing a forum for voicing your opinions. I claim no
responsibility for any opinions expressed here.
THE ANATOMY OF FEAR
The Anatomy Of Fear and
How It Relates To Survival
Skills Training
"Research is to see what everyone else has seen, and think what no one else
has thought." Albert Szent-Gyorgy (Nobelish 1927)
Copyrighted Darren Laur 2002
Integrated Street Combatives
The Anatomy Of Fear and How It Relates To Survival Skills Training
An officer assigned to jail duty conducts a prisoner bed check when he
observes that a male, who was lodged in the drunk tank, was laying face down
not breathing in a corner of the cell. The officer attempts to verbally
arouse the prisoner, but these attempts fail. The officer now believing
that the prisoner is dead, proceeds into the cell, bends over and grabs the
prisoner by his left shoulder in an attempt to roll him over. At this point
in time the prisoner, spontaneously and by complete surprise, quickly rolls
towards the officer, and with his right hand, swings towards the officer's
face. The officer "instinctively" pulls both of his arms in to protect his
head, and moves backwards. The suspect has now moved to his feet, and again
lashes out towards the officer with what the officer "perceives" to be a big
right hooking punch, at which time the officer again puts his hand up to
cover his head, crouches and again moves backwards away from the threat.
The officer only now realizes that he is bleeding profusely, but doesn't
know why. The prisoner now lunges at the officer a third time, with a
straight liner punch, at which time the officer sees the shinning glimmer of
a metal object in the prisoners right hand. As this third attack makes
contact with the officer, he instinctually attempts to push the prisoners
hands away from his body, but contact is made resulting in a puncture wound
to the officer's chest area. The officer now realizing that he is in an
edged weapon encounter, and cut several times, disengages from the cell area
to call for help.
The above noted scenario happened to a police officer in my department in
1992. Although this officer had received training in edged weapon defence,
and was one of the more officer safety conscious members of the department,
he could not make his training work. Based upon the officers reaction to
this spontaneous attack, I began to wonder if the "instinctual" physical
reactions to this attack, which were totally different from the training he
received up to that point in time, would be experienced by other officers as
well, if placed into a spontaneous attack situation in which they had no
idea that an attack was going to occur.
I'm a big believer in, "don't tell me, show me" so in early 1992 I conducted
an empirical video research study. I had 85 police officers participate in
a scenario based training session where unknown to them, they would be
attacked with a knife. The attacker, who was dressed in a combatives suit,
was told that during mid contact, they were to pull a knife (that they had
concealed), flash it directly at the officer, yell "I'm going to kill you
pig," and then engage the officer physically. The results were remarkable:
* 3/85 saw the knife prior to contact
* 10/85 realized that they were being stabbed repeatedly during the scenario
* 72/85 did not realize that they were being assaulted with a knife until
the scenario was over, and the officers were advised to look at their
uniforms to see the simulated thrusts and slices left behind by the
chalked training knives
When I reviewed the many hours of videotape of the above noted scenarios, I
also made two very important and interesting observations in how the
majority of officers reacted to the spontaneous attacks:
* most flinched, bringing both hands up to protect their head while crouching
at the same time, and attempted to disengage from the attacker by backing
away from the threat. This usually resulted in the attacker closing the gap
quite quickly with their victim
* Those officers that did engage the threat immediately, proceeded to effectively
block the initial strike of the attacker and then immediately grappled with the
attacker using elbows and knee strikes
After making these observations, I asked myself why I was seeing these
reactions. During this 1992 research project, I had the opportunity to read
an article authored by Bruce Siddle and Dr. Hal Breedlove entitled, "
Survival Stress Reaction." In this article Siddle and Breedlove stated:
"...research by numerous studies provide two clear messages why people will place
themselves in bad tactical situations. The common phenomena of backing away under
survival stress results from the visual systems deterioration of the peripheral
field to attain more information regarding threat stimulus. Since the brain is
demanding more information to deal with the threat, he officer will invariably
retreat from the threat to widen the peripheral field. Secondly, the brains normal
ability to process (analyze and evaluate) a wide range of information quickly is
focused to specific items. Therefore, additional cues, which would normally be
processed, are lost. This explains why people can not remember seeing or
identifying specific facts which were relatively close to the threat."
The research by Siddle and Breedlove not only confirmed my findings, but also
answered why our officers were acting this way. It also explains why one officer,
who had actually caught the attackers knife hand with both of his hands and was
looking directly at the knife, stated "I didn't see any knife." It was not until
I showed the video replay that he believed there was a knife.
In 1995, Bruce Siddle released his first book entitled, "Sharpening The
Warrior's Edge The Psychology and Science Of Training." In my opinion,
Sidles's published works began to answer a lot of the questions that I asked
during my experience with, and empirical research into combatives.
The first real studies in the area of Survival Stress Reaction (SSR) as it
related to combat performance, were conducted in the 1930's. This study noted
that soldiers, who were sending Morse code (fine/complex motor skill) during
combat situations, had much more difficulty in doing so when compared to non-
combat environments. The next real research in SSR came during the Vietnam War
as it related to the location of buttons and switches in fighter cockpits. As
a result of this research, cockpits were reconfigured to take SSR into affect,
as it specifically related to eye/hand co-ordination during combat situations.
Although much of the early research surrounding SSR was conducted by the military
during times of war, recently (from about the mid-1960's to present time) a lot
of research has been conducted in SSR as it relates to athletic performance.
Siddle's definition of SSR as it relates to combat is: "a state where a 'perceived'
high threat stimulus automatically engages the sympathetic nervous system." The
sympathetic nervous system is an autonomic response process which, when activated,
one has little control of." Why is SSR so important when it comes to combat/self
protection? Because when activated, SSR has both a psychological and physiological
effect to the body which could affect one's perception of threat in a negative way.
So what are some of these effects according to Siddle's research?
a) Increased Heart Rate:
* We know that SSR is directly related to an increased heart rate
* At 115 bpm, most people lose fine motor skills such as finger dexterity, eye/hand
coordination, and multi-tasking becomes difficult
* At 145 bpm, most people lose complex motor skills (skills designed to work in unison)
b) Effects To Visual System:
* The visual system is the primary sensory organ of the body for those of us that can
see, due to the fact that the visual system sends information to the brain that is
needed during combat/self-protection
* At 175 bpm, a person will experience an eye/lid lift, pupils will dilate and flatten.
As this reaction takes place, a person will experience visual narrowing (commonly known
as tunnel vision). This is why it is very common for a person to back up from a threat
in order to get more information through this tunnel. I t is also at this point in time,
that a person becomes "binocular" rather than "monocular." This is why in Close Quarter
Battle shooting, I teach two eye "binocular" shooting rather than one eye aimed shooting.
* At 175 bpm, visual tracking becomes difficult. This is very important when it comes to
multiple threats. During multiples, the brain will want the visual system to stay with
what it sees to be the primary threat. Once this threat has been neutralized, the brain
and visual system will then find its next threat. This is commonly known as the "light
house effect." Studies found a person in SSR will experience on average a 70% decrease
in their visual field. This is one reason why in combat, we need to teach students to
constantly be scanning their environment, looking for the second and third opponent.
* At 175 bpm, it also becomes difficult to focus on close object. One of the first things
to go under SSR is depth perception. A fighter WILL become far sighted rather than near
sighted. This is why it is very common for people experiencing SSR to say that the threat
was either closer or father away from where they actually were. Studies in SSR have shown
that binocular fighting/shooting will improve one's depth perception by 20-30%.
c) Effects To The Auditory System:
* At approx 145 bpm, that part of the brain that hears, shuts down during SSR. This is one
reason why it is not uncommon for fighters to say, "I didn't hear that," " I heard voices
but I could't understand what they were saying," or "I heard bits and pieces," and " I
didn't hear a gun shot."
d) Effects To The Brain:
* At approx. 175 bpm, it is not uncommon for a person to have difficulty remembering what
took place or what they did during a confrontation.
* This recall problem is known as "Critical Stress Amnesia." After a critical incident, it
is not uncommon for a person to only recall approx 30% of what happened in the first 24
hours; 50% in 48 hors; and 75-95% in 72-100 hours.
* At 185-220 bpm, most people will go into a state of "hypervigilance," also commonly known
as the "deer in the headlights" or "brain fart mode." It is not uncommon for a person to
continue doing things that are not effective (known as a feedback loop) or to show irrational
behavior such as leaving cover. This is also the state in which people find themselves in when
they describe that they can not move, yell, or scream. Once a person is caught in a state of
hypervigilance, it is a downward spiral that is very tough to get out of. Once caught in a
state of hypervigilance information on the threat is reduced to the brain, which leads to
increased reaction time. This increased reaction time then leads to a heightened state of
stress that further exacerbates hypervigilance.
e) Effects To Motor Skill performance
* At approximately 115 bpm, fine/complex motor skills become less available/effective (pulling
a trigger, handling a knife), but gross motor skills turn on and become optimized.
So why is this information so important? Because Siddle's research has found the higher the heart
rate, the more SSR will affect one's perception of threat. It is this "perception" of threat that
dictates one's response options.
In a study conducted by Dr. Alexis Artwohl (author of Deadly Force Encounters) between the years
of 1994-1999, she interviewed 157 police officers that were involved in deadly force shootings.
Dr. Artwohl's study revealed the following results specific to "perception" issues:
* 84% experienced diminished sound (auditory exclusion)
* 79% experienced tunnel vision (peripheral narrowing)
* 74% experienced "automatic pilot" with little or no conscious thought
* 71% experienced visual clarity
* 62% experienced slow motion time
* 52% experienced memory loss for part of the event
* 46% experienced memory loss for some of their own behavior
* 39% experienced dissociation; sense of detachment or unreality
* 26% experienced intrusive distracting thoughts
* 21% experienced saw, heard, or experienced memory distortion
* 17% experienced fast motion time
* 07% experienced temporary paralysis
Dr. Artwohl's research is also echoed by other researchers (Solomon and Horn 1986; Hoeing and
Roland 1998; and Klinger 1998), who found the same "perception" issues.
One must remember that in combat, a person's heart rate can go from 70 bpm to 220bpm in less than
half a second. So what is the "combat maximum performance range" when it comes to SSR and heart rate?
In his studies, Siddle found that it is between 115-145 bpm. Siddle also found that a fighter's
"maximum reaction time performance range" is also between 115-145 bpm. In other words, the 115-145
bpm range is where fighting skills (gross motor) and reaction time are maximized.
As I said earlier, SSR is an autonomic response, which happens without conscious thought. Having
said this, Siddle in his research has found that a person can manage SSR to attain that peak 115-145
bpm range in the following ways:
1) Skill Confidence:
* This takes place through both mental and physical training
2) Experience Through Dynamic Simulation Training
* Experience increases and builds confidence - reduces "newness" of stimulus
* Training should be "realistic" stimulus/response based
* The more real the training experience (stimulus) the better
3) Visualization (mental imagery)
* Commonly known as "spinal tuning" we now know that the upper part of the spinal column holds
a short-term memory.
* This is one reason why I have taught our Victoria Police Department's Emergency Response Team to
visualize both their plan "A" strategy and plan "B" strategy as they are enrout to their target.
* Remember that the mind can not easily tell the difference between fantasy and reality. The more
one uses mental imagery, the more one becomes spinal tuned to deal with the task at hand.
* As a certified hypnotherapist, I use the science and art of hypnosis and Neuro Linguistic Programming
to pre-program stimulus/response issues directly into the subconscious, specific to combat performance.
Not only have I have seen a DRAMATIC increase in combative performance in those students in which I am
using hypnosis and NLP, but I am also experiencing about a 50% decrease in the amount of time needed to
make a student unconsciously competent in the skill set taught, when compared to those who I have not
conducted this type of training. In fact, I truly believe that hypnosis and NLP specific to combatives,
will be the next nexus in training.
4) Breathing
* This skill has been used in the martial arts for thousands of years
* Known as autogenic breathing
* One wants to breath in through their nose for a three count, hold for a two count, and then breath
out through the mouth for a three count. Studies have found that if a person was to do this for a
3-cycle count, it decreases one's heart rate up to 30% for up to 40 seconds. Again remember that
heart rate is directly related to SSR. If a person's heart rate was sitting at around 175-220 bpm,
autogenic breathing would help bring them back down into that target range of 115-145 bpm.
* I have also taught this skill to our department's ERT team. While they are doing their spinal tuning,
they are also conducting autogenic breathing drills at the same time. Our ERT team has conducted a lot
of empirical and "real world" operations where they placed heart monitors on team members that have
proven this de-escalation in heart rate.
5) Value Of Life:
* In our society a person's life is considered to be precious. In fact, most of our morals and laws are
based upon protecting oneself and others against serious injury or death.
* In a self defence situation, one may have to seriously injury or even kill another human being.
* Although a reality, many people involved in combatives training have not "really" internalized or even
thought about this. Because of one's "belief system," to kill or seriously injure another person is as
foreign to them as committing suicide.
* If one does not come to grips with this issue one will fail to act in such a situation.
6) Belief In Mission / Task At hand:
* If you do not believe in the mission or task at hand, or if the risks outweigh the ultimate benefit to
you/society, you WILL hesitate in combat
* One who hesitates in combat, will usually levitate (12 feet under or be seriously injured)
7) Faith System:
* You do not want to go into combat without having things resolved.
* Both the ancient samurai and the kamikaze's during WWII understood this important rule.
* Even in our modern times, there are certain special warfare teams around the world that are allowed to
make peace with their deity prior to mission
* A strong faith system, whatever that faith system may be, MINIMIZES the fear of dying. As a graphic
example of this, look at the events of September 11th and how the terrorists were not afraid to die
and thus were able to carry out their mission. Also, look at what is happening in Israel right now
with suicide bombers!
* Remember, combat is not the place for you to be making major adjustments to your belief system. You
need to be concentrating on the task at hand and nothing else. Not to do so places yourself in jeopardy.
8) Training:
* Training for combat "must" be gross motor based. Why? Because we know that during combat, SSR will
negatively effect fine/complex motor skill performance no matter how well trained!
* For any skill taught, there must always be a plan "B" abort strategy conditioned as well. We must not
be teaching multiple defences (responses) to a specific type of attack (stimulus). The reason for this
is HICKS LAW!
* Hicks Law basically states the following: the average reaction time given one stimulus one response is
about ½ second. If we now teach a student a second technique (response) to the same attack (stimulus) we
WILL increase a person's reaction time by 58%. On the street we want to DECREASE reaction time, not
increase it. If we teach multiple defences to one specific attack, the brain will take time deciding which
option to use. This increased reaction time could mean the difference between life and death.
* Instructors should always teach a new technique in slow motion. Why? It allows the student's brain time to
observe the technique and begin the "soft wiring process" which becomes "hard wired" through physical and
mental training in conjunction with repetition, as long as it is gross motor skilled.
* All physical skills should be chunked or partitioned into progressive steps, rather than taught all at once.
Many instructors when teaching a physical techniques will have the students practice the entire technique
from beginning to end when first learning the specific skill set. This is a huge mistake. Remember that the
brain first learns in pictures and through modeling. By teaching a technique from A to Z all at once, the
student may not fully develop the proper and full "mental picture" needed to perform the technique properly
which usually leads to frustration by the student. Teachers, coaches, and instructors must insure that the
student understands step A fully, then move onto step B. Once step B is understood move on to step C and so
on. By doing this, frustration goes down, while confidence and skill level go up.
* Once the skill sets are learned, they must now be applied in dynamic training in order to make the
stimulus/response training as real as possible. Again, the more the real the training, the better prepared
one becomes for the reality of the street.
It must be noted, that most of Siddle's pre-1995 published work, with regard to motor skill performance, was
based upon the research of leading sports psychologists. Prior to 1995, most of the research surrounding motor
skill performance used fluctuations in heart rate to measure performance, due to the fact that it was the only
biological mechanism that was "measurable" via scientific testing protocol at the time. Although Siddle's
research (based upon his book "Sharpening The Warriors Edge") has brought to light the physiological effects
to the emotion of fear such as increased heart rate, fine complex motor skill deterioration, and what we can
do as instructors to limit the effects of SSR during combat, it did not fully explain why and how the brain
learned and responds to the emotion of fear, thus triggering SSR. To me, this is the key question to be answered
if one's combative system or style is going to be able to consistently deal with an unexpected spontaneous assault,
be it unarmed or armed. In other words, are our brains hardwired to the point where a trained response, no matter
how well ingrained, be overridden by a more powerful "instinctual" response? If the answer to this question is yes,
can this instinctual response be changed, molded, or integrated into a combative context?
Research into this question, specific to Survival Skills Training, has really been non-existent. Having said this,
neuroscientific research into how the brain learns and responds to the emotion of fear, has taken off over the past
few years, due mainly to brain mapping technology such as MIR's. One of the more significant researchers, Dr. Joseph
LeDoux of New York University, has led the way in tracing brain circuitry underlying the fear response in animals and
mammals, which have been directly correlated to humans as well. It is because of Dr. LeDoux's pioneering research,
that the neural pathways and connections that bring upon the effects of SSR are now being understood.
Dr LeDoux has stated, "fear is a neural circuit that has been designed to keep an organism alive in dangerous
situations." Through out his research, Dr. LeDoux has shown that the fear response has been tightly conserved
in evolution through out the development of humans and other vertebrates. According to most in the Neuroscience
field, the areas of the brain that deal with fear are located in the phylogenetically old structures commonly
known as the "reptilian brain." Dr. LeDoux believes based upon his research that, "learning and responding to
stimuli that warn of danger involves neural pathways that send information about the outside world to the
amygdalya, which in turn, determines the significance of the stimulus and triggers emotional responses like
running, fighting, or freezing, as well as changes in the inner workings of the body's organs and glands such
as increased heart rate." This statement explains to me, the correlation between SSR and heart rate increase as
reported by Siddle in his research.
Siddle's research drew a direct correlation between SSR and heart rate increases. The problem with this assumption
is that for people such as runners who can have very high heart rates, SSR does not take effect. Why, the runner's
high heart rate is caused by physical exertion, and not the emotion of fear caused by a spontaneous or immediate
threat to body or life, which triggers the neurological response of the brain and more specifically, the amygdala,
which in turn begins the SSR process. This also explains why instructors, who have attempted to mirror Siddle's
research through hooking students up to heart monitors like those worn by runners, and then subjecting them to
physical exertion exercises like pushups and wind sprints, have failed to see any fine complex motor skill
deterioration. It should also be noted, that even Siddle acknowledges the fact, primarily due to Dr LeDoux's
post-1995 research, that heart rate increase is nothing more than a "thermostat" or "indicator" of a perceived
stress level, and is "not" the driving force of performance deterioration.
Dr LeDoux has also found, "there are important distinctions to make between emotions and feelings. Feelings
are "red herrings," products of the conscious mind, labels given to unconscious emotions, whereas emotions are
distinct patterns of behaviors of neurons. Emotions can exist of conscious experiences as well as physiological
and neurological reactions and voluntary and involuntary behaviors." I believe the important thing to take
from this statement is that the emotion of fear is an unconscious process that has been blueprinted at the
neurological level, and when triggered, has physiological reactions that we may have little, if any, control
over, but which can be molded.
Dr. LeDoux has also discovered that the components of fear go way beyond feelings and emotions. According to
Dr. Ledoux it is also the specific memory of the emotion. A fellow Neuroscientist, Dr. Doug Holt expanded upon
this fact and said, "after a frightful experience, one can remember the logical reasons for the experience
(i.e., the time and place) but one will also feel the memory, and his body will react as such (i.e. increased
heart rate and respiration rate, sweating)." This is why it is not uncommon for a survivor of spontaneous
assault to not only vividly remember each detail, but also when doing so, their body reacts as though they
were reliving the experience. This is another reason why I believe that guided imagery, when used appropriately
and professionally, will be the next nexus in combatives training. Although not all scientific research makes
this particular distinction between emotions and feelings, most would agree that the fear response involves more
than just the physical preparation for "fight, flight, or hypervigilance." This initial, physiological response
is followed by a slower, more detailed psychological assessment of the dangerous situation being faced, during
which the individual becomes conscious of feeling afraid So what happens in our brain when the emotion of fear
is triggered? According to Dr. LeDoux and other Neuroscientist, once the fear system of the brain detects and
starts responding to danger (primarily the amygdala which receives input directly from every sensory system of
the body and can therefore immediately respond), and depending upon fear stimulus intensity, the brain will
begin to assess what is going on, and try to figure out what to do about it using the following process:
* Information of the threat stimulus is detected via the senses of the body; sight, sound, touch, smell, taste
* Information from one or all of these senses is then routed to the thalamus (a brain structure near the amygdala
that acts like an air traffic controller or a mail sorting station that sorts out incoming sensory signals)
* In a non-spontaneous threat situation, the thalamus will direct information received to the appropriate cortex
of the brain (such as the visual cortex) which consciously thinks about the impulse, assessing the danger, and
making sense of it. This is where the O.O.D.A. loop begin (Observe, Organize, Decision, Action)
* Once a decision has been made as to what to do, the information is then downloaded to the amygdala which creates
emotion and action through the body to either perpetuate a physical response or to abort a physical response.
Again, this process takes place in non-spontaneous type situations. This neuro pathway is commonly called the
"high road." This is the pathway in which most combatives instructors teach too. In other words:
* Person throws a right hooking punch which is seen and detected by the visual system.
* Visual system downloads this stimulus to the thalamus that sorts it and send it to the visual cortex of the brain.
* Visual cortex using the OODA loop, observes the stimulus, organizes it (right hooking punch), makes a decision as
to how to deal with stimulus and then downloads the response to the amygdala.
* Amygdala then creates emotion and action through the body and the punch is blocked.
This is what Siddle and others have called stimulus/response training. A threat stimulus triggers a trained
response is the goal, as long as that trained response is gross motor based and takes into consideration Hicks
Law, as mentioned earlier in this article. Siddle has stated, "an automatic response to a specific threat can
only occur when the students practice a skill in conjunction with a specific level of threat. For a response
to be conditioned or an automatic response, there must be an associated stimulus which triggers the response.
Therefore, if a survival motor program is expected to be automatic to a threat in the field, the two must be
combined early in the student's training." Although I do agree that we as instructors should be focusing our
training at the development of automatic responses to a specific threat stimulus, what happens if those trained
responses are not congruent with the body's hardwired response during an unexpected spontaneous assault? Does
it not make logical sense that we as trainers should teach a physical response that would be congruent with
what the brain has preprogrammed itself to do through millions of years of evolution?
Again, the answer to this question is a definite yes, and Dr. LeDoux has been able to prove scientifically why.
Dr. LeDoux has found that frightening stimuli trigger neuronal responses along dual pathways. The first path is
the one mentioned above "the High Road." The second path is known as the "low road," and this is the path that
the brain "WILL" follow in a spontaneous surprise attack for survival:
* In a spontaneous surprise attack, information received by the thalamus is quickly re-routed to the amygdala
bypassing the cortex (the thinking brain in which OODA is followed)
* The amygdala immediately sets SSR (autonomic arousal) into effect with the added benefit of what
neuroscientists have called "Somatic Reflex Potentiation" also commonly known as the "startle circuit"
or "protective reflex" (i.e., an exaggerated startle/flinch response). Other protective reflexes include:
sneezing, eye blinking, gag reflex, pulling away from a pain stimulus, laryngospasm (closing of the airway
to prevent water into the lungs)
* After passing directly through the amygdala, which initiates SSR and Somatic Reflex Potentiation, sensory
information is then sent to the cortex.
* Once the cortex has received this information, the frightening stimulus is then examined in detail to
determine whether a real threat exists. Based upon this information, the amygdala will be signaled both to
perpetuate the physical response and deal with the threat or abort action. Because the amygdala is aroused
before the cortex can accurately assess the situation, an individual will experience the physical effects of
fear even in the case of a false alarm. The "low road" has already prepared the body for immediate action.
Knowing that the brain has a dual pathway to deal with what I like to call progressive and spontaneous fear
stimuli, Dr. LeDoux has stated, "there are problems associated with the double wiring between the higher
cortex and the amygdala. Unfortunately the neural connections from the cortex down to the amygdala are less
well developed than are connections from the amygdala back up to the cortex. Thus, the amygdala exerts a
greater influence on the cortex than vice versa. Once an emotion has been turned on, it is difficult to
exert conscious control over it at will." What this means to me is that in an unexpected spontaneous attack,
if you are training motor skills that are not congruent with what the amygdala will cause the body to do,
more specifically the "Somatic Reflex Potentiation" no matter how well trained the response, it will be
overridden. But many in the combatives field believe that we can make a trained response the dominant
response through repetition and training using stimulus/response training methods. In a "high road"
scenario this will work given SSR issues and Hick's law, but in a "low road" scenario, the answer will
only be "yes" as long as the motor skill taught is congruent with the automatic protective reflex the
amygdala will cause the body to take.
To demonstrate the importance of this "congruency" issue, an empirical study that examined 98 shooting
scenarios that were either spontaneous or non-spontaneous in nature, firearms instructor, Westmorland
(1989), compared two shooting styles/systems (Weaver and Isosceles) to see which one was more suitable
during times of what Westmorland called "Combat Stress." In this study, Westmorland utilized dynamic
scenarios based training with dye marking rounds. It should be noted that the majority of the officers
involved in this study were "Weaver" practitioners. The results of the study:
Spontaneous under 10 feet: 39 total scenarios
96.7 % Isosceles (29 events)
3.3% Weaver (1 event)
62.1% one-handed stance (18 events)
23.1% failed to respond (9 events)
Spontaneous over 10 feet: 27 total scenarios
92.6% Isosceles (25 events)
7.4% Weaver (2 events)
14.8% One-handed stance (4 events)
Non-spontaneous under 10 feet: 27 total scenarios
74.1% Isosceles (20 events)
25.9% Weaver (7 events)
Non-spontaneous over 10 feet: 5 total scenarios:
60.0% Isosceles (3 events)
40.0 Weaver (2 events)
Westmoreland study results:
56.1% two-handed Isosceles stance (55 events)
12.2% one-handed stance (12 events)
22.5% two-handed Weaver Stance (22 events)
9.2% officer failed to respond
Westmoreland's study created quite the debate in the Weaver vs. Isosceles shooting camps, and stood
alone until 1997 when a respected firearms instructor by the name of Bill Burroughs (former assistant
Director of the Sigarms Training Academy) conducted a similar study. In Burroughs study, he asked two
very important questions:
* "What does the average trained officer resort to when faced with a simulated and spontaneous
life threatening assault" and;
* "How does this response compare to the officer's previously trained shooting stance."
Burroughs empirical research study involved 157 officers:
* 47% were Weaver trained shooters
* 17% were Isosceles trained shooters
* 32% stated that they used a "natural" stance
In Burrough's study, all 157 officers were placed into 188 life threatening dynamic training scenarios, which
utilized Simunition. When Burroughs reviewed the findings of his research, he found what once officers were
placed into a dynamic/spontaneous-shooting situation, the above noted percentages changed dramatically:
* 59% of the 157 officers adopted an Isosceles stance
* 19% of the 157 officers adopted a Weaver stance
* 7% of the 157 officers adopted a "natural" stance
* The rest did not respond at all.
Another very interesting observation that Burroughs made during his research was that those officers who adopted
a Weaver stance had the "opportunity" to "pre-select" their stance before the scenario became critical.
The above two studies (Westmoreland and Burroughs) were further tested by Steve Barron and Clyde Beasly of
Hocking College in Ohio. Both of these instructors are firearms managers for the regional police academy.
Hocking College was teaching "Weaver" shooting techniques to recruits, but when these same recruits were
moved from static range training to dynamic force on force simulation training using Simunition cartridges,
they noted consistently that the taught Weaver stance was not being used. Instead, they observed that these
same recruits would adopt a two handed Isosceles shooting platform.
Many of the experts in the field of Sport Psychology and Motor Performance do not find the above noted research
all that surprising. In fact, Robert Weinberg (PhD), a well known and highly respected sports psychologist, stated
(after reviewing Westmoreland's study), "One principal which seems appropriate is that individuals usually return
to their preferred or instinctual mode of behavior especially under stress. When put into a stressful situation,
it is instinctual to face your opposition (Isosceles) rather than turn to the side (Weaver)."
The purpose of the above noted studies is not to get into the debate between Weaver and Isosceles shooters, but
rather to demonstrate the fact that if a trained response is not "congruent" with what neuroscientists have called
the "Somatic Reflex Potentiation", it will be over ridden.
Remember, according to Dr. LeDoux, this "low road" signal system does not convey detailed information about the
threat stimulus, but it has the advantage of speed. And in combat speed is of great importance to one facing a
threat to their survival. Dr Ledoux pointed out that having a very rapid, if imprecise, method of detecting danger
(such is found in the low road pathway) is of high survival value. As Dr. Ledoux has stated in several articles
that I have researched, " You're better off mistaking a stick for a snake than a snake for a stick."
As I stated earlier in this article, there is quite a large body of "psychological" research into stress and fear.
One of the leaders in this field is Dr. Seymour Epstein who in 1994 did a comprehensive review of this topic area.
Dr. Epstein had come to the conclusion, from a psychological perspective, that a person has "two" distinctly
different modes of processing information during a spontaneous high threat situation:
1. Rational Thinking: (low emotional arousal states) able to calmly engage in the conscious, deliberative,
analytical cognitive processing
2. Experiential Thinking: ( high stress and emotional arousal) an automatic, intuitive mode of information
processing that operates by different rules from that of the rational mode, far more efficient during
times of high stress than conscious deliberate thinking
Dr. Epstein, based upon his research, points out "In most situations that automatic processing of the experiential
system is DOMINATE over the rational system because it is less effortful and more efficient, and, accordingly is
the DEFAULT option." This is especially true in sudden, high stress, situations requiring instant physical performance.
It is my belief that Dr. LeDoux has now provided the physiological explanation for what has been empirically
observed for years, by researchers such as Dr. Epstein, about how people process information in "high" vs. "low"
emotional arousal states. As Dr. Artwohl stated in an e-mail to me, "It's like saying we have been able to
empirically observe for millennia that people 'see' things by their ability to report what they are seeing, but
neurologists can now tell us 'how' the sensory information is transported to the visual cortex where it can be
interpreted an translated into visual images."
So what is the correlation between the neuroscientific research of fear, and it relationship to survival skills training?
1. The brain has been "hard-wired" to deal with the emotion of fear.
2. One pathway is known as the "high road" in which action can be based on conscious will and thought. This pathway
appears to take effect during "progressive" types of fear stimuli. Here a combatives student will be able to apply
stimulus/response type training using the OODA model having regards to gross motor skills and Hick's Law.
3. A second pathway is known as the "low road" which is triggered by a spontaneous/ unexpected attack. Here, the
brain will take control of the body with an immediate "protective reflex" (downloaded directly to the brain
stem where all of our reflexive responses to danger are stored), which will override any system of combat that
bases its ability on "cognitively" applying a physical response. This is especially true if the trained response
is not congruent with the "protective reflex" (this is exactly what I observed in the 1992 video study that I
conducted and mentioned earlier in this article).
So what can we as Instructors, coaches, and teacher do to incorporate the most current research in the field
of Fear and Survival Skills Training?
* Absorb the above noted information and research it yourself
* Seek out instructors, coaches, trainers that are using this research in their training. You will be surprised
that there are few that do. One of the leading pioneers in design and implementation of programs that
incorporate this information is Tony Blauer and those associated with his organization in which I am not
a member. Since 1992, the motor skill training programs I teach have also revolved around the principals
of the above noted information as well. Another instructor, Richard Dimitri (Senshido) provides training
based upon the above noted information. And of course, Bruce Siddle and his PPCT management systems is
also a leader in the field of SSR, as it relates to motor skill performance in combative training.
* If you can not attend courses from the above mentioned, look at what you are doing in the area of self protection
and ask yourself, is my training "congruent" with the above noted information, if not change what you are doing.
* Train on the concept of "commonality of technique." The initial plan "A" strategy that I use in an unexpected
spontaneous assault (be it armed or unarmed), is no different than in an attack that I do see coming. Why,
because no matter if the brain goes "high road" or "low road", my "congruent" gross motor skills will work
in both paths. This is a definite tactical advantage.
* Understand that although the "low road" reflexive motor responses cannot be changed, they can be "molded" to
fit a combative motor skill technique that are useable during a spontaneous attack. I use the Somatic Reflex
Potentiation response, which I call "penetrate and dominate," in all my programs. Tony Blauer uses the flinch
response in his SPEAR system. Richard Dimitri also incorporates the flinch in his training at Senshido.
* Fortunately, there are methods of reducing fear and inhibiting the fear response (see Siddle's 8 steps to
management of SSR earlier in this article).
I am not a doctor or Neuroscientist, but I have been studying combatives for the past 14 years. Since 1992, I have
been using training techniques based upon the above noted information, not knowing that I was doing so. In the past,
my training was based solely on my empirical research here at the school, and what was happening to officers and
civilians in the real world. The information in this post has now solidified my belief that what I am doing (and
have been doing for years) in the area of combatives is correct. This belief is not only based upon my empirical
research over the past 10 years, but as reported in this article, the scientific research as well.
The field of Neuroscience, specific to fear, is constantly evolving. Any true "Street" combative system or style,
should keep abreast of these new discoveries, and integrate them into training to make their survival skills
more street applicable.
Knowledge and the understanding and application of that knowledge is power. Please feel free to pass this
information on, but remember give credit where credit is due.
Strength and Honor
Darren Laur
Integrated Street Combatives
References For this Posting:
* Bruce Siddle, Sharpening The Warrior's Edge The Psychology and Science Of Training
* Lt. Col Dave Grossman, On Killing The Psychological Cost Of Learning To Kill In War And Society
* Dr Doug Holt, The Role Of the Amygdala In fear And Panic
* The Anatomy Of Fear
* Michael Davis, The Role Of The Amygdala In Fear And Anxiety
* National Institute Of Mental Health, Lessons From Fear Conditioning
* LeDoux Laboratory, Overview, Emotion, Memory, and The Brain
* Joseph E LeDoux, Memory and Emotion
* Laurel Duphiney Edmunson, The Neurobiology Of Fear
* Joshua Freedman, Hijacking Of The Amygdala
* Society For Neurosciences, Fear And The Amygdala
* Perceptual and Memory Distortions During Officer Involved Shootings, Dr. Alexis Artwohl, Ph.D.
Darren and Beth Laur
Personal Protection Systems Inc
2611 Rainville Rd, Victoria, British Columbia, Canada,
V9B-3N2
(phone/ fax) 250-478-9119
e-mail: personalprotection@shaw.ca
Back: